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Abstract 
 This work studies the constitutive response of two- and three-dimensional lattice materials subject to 

isotropic prestress. The unit cell of the examined lattices is formed by an arbitrary number of junctions attached to 
a junction. Analytic formulae for second-order elastic constants and elastic stiffness coefficients of stretching-
dominated lattices are provided. In addition, numerical results for the incremental elastic moduli of composite 
lattices equipped with hard and soft rods are presented. The given results highlight that isotropically pre-tensioned 
lattices may exhibit marked variations of the elastic   stiffness moduli in the prestressed state, over the values 
competing to the stress-free configuration. This study also discloses that prestressed lattices may feature   
incremental auxetic response, when composite architectures suitably combining hard and soft materials are 
employed for their fabrication.  
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1  Introduction 
  Recent research in the area of lattice mechanics has revealed that suitably designed, micro- and nano-

lattice materials are able to achieve extreme properties over more than several orders of magnitude in density, 
being able to fill holes in the current material property charts, through an optimal control of material and space 
[1]-[19]. Stretching-dominated lattices can achieve extremely high stiffness-to-density ratios [6]-[19], while 
bending-dominated lattices generally exhibit more compliant but more recoverable response under large strains 
[3, 4, 15]. Hierarchical architectures and structures equipped with hollow tubes have been employed to combine 
high strength and high recoverability [6, 7, 14, 17, 18], since standard stretching-dominated lattice materials are 
typically affected by failure under buckling, which may reduce strength and cyclability of the material [7, 13, 14]. 
Increasing attention are also receiving the so-called isogrid and anisogrid lightweight structures [20]-[23]. A 
special class of lattice materials with extremal response is that of auxetic lattices, which are endowed with peculiar 
microstructures (e.g., honeycomb architectures with re-entrant corners) that allow the material to exhibit strains of 
equal signs both in the direction of the applied load, and in the transverse direction (i.e., negative Poisson’s ratios) 
[24]. It has been show that auxetic structures are well suited for the manufacturing of impact- and vibration-
resistant materials, in biomedical applications, and for the fabrication of innovative fibre-reinforced composites, 
just to mention few relevant examples [25]-[28]. 

The effects of initial stresses on the incremental constitutive response of elastic solids have been longly 
investigated in the literature (refer, e.g., to [29]-[36] and references therein). Initial stresses may refer to the state 
of stress of a body that has undergone a previous story of finite elastic deformations (prestressed body), and/or to 
self-equilibrated (or residual) stresses arising in a body in absence of external loads, due to manufacturing 
processes, growth processes, hygrothermal effects, etc. [35]. Such stresses are diffusely present in biological 
structures, like arteries and soft tissues [34], and their action may significantly affect the constitutive response and 
the propagation of mechanical waves in elastic materials [35, 36]. The effects of geometric stiffness terms due to 
large displacements and initial stresses in tensegrity structures and other prestressed lattices are diffusely analyzed 
in [37, 38, 39] and references therein. The relevant role played by such effects on the incremental response of 
prestressed lattices structures is nowadays well recognized in the literature, but most of the available studies are 



focused on finite size structures, rather than the continuous response of infinite networks at the mesoscale (refer, 
e.g., to [38] for an overview). 

Additive manufacturing has become the most common technique for fabricating periodic lattices materials 
at different scales (refer, e.g., to [40, 41] and references therein). Several fabrication methods have been proposed 
in this field, with resolution ranging from the centimeter- to the nanometer-scale. Worth mentioning here are: fused 
deposition modeling (FDM); polyjet 3D printing technologies; electron beam melting; x-ray lithography; deep 
ultraviolet lithography; soft lithography; two-photon polymerization; atomic layer deposition; and projection 
micro-stereolithography, among other available methods [40]-[43]. The application of prestress states in lattices 
fabricated through additive manufacturing, however, is an open issue at present. 

The present study investigates the incremental elastic response of 2d and 3d stretching-dominated lattice 
materials, which are subject to a homogeneous state of isotropic prestress induced by a finite deformation from 
the natural (or stress free) state. The targeted lattice materials may consist of sandwich structures with truss cores 
and restraining facesheets [44], which are subject to initial pre-tensioning through suitable actuation devices [37, 
45]. We study the kinematics, equilibrium equations and incremental elastic energy of the isotropically prestressed 
lattices (Sects. 2-4), assuming that their unit cell is formed by an arbitrary number of rods attached to a junction. 
Next, we obtain analytic expressions of second-order elastic constants and elastic stiffness coefficients [29]-[33] 
(Sect. 4). The adopted approach to the elastic moduli of isotropically prestressed lattices reduces to that given in 
[33] for statistical mechanics systems at zero temperature. We apply the obtained formulae for the elastic constants 
to noticeable 2d and 3d examples of lattice materials under isotropic prestress (Sect. 5), which are different from 
those studied in [38]. Such a study is focused on composite lattices that can be additively manufactured, and are 
formed by rods made of either ‘hard’ and/or ‘soft’ FDM materials [46, 47]. The given numerical results reveal 
novel features of the mechanical response of isotropically pre-tensioned, hard/soft composite lattices, which 
consist of their ability to exhibit significant variations of the elastic moduli from the prestressed state, as compared 
to the moduli characterizing the stress-free configuration. In particular, the examined lattice materials are found 
capable to show marked auxetic incremental response from the prestressed state. Concluding remarks and 
directions for future work are presented in Sect. 6. 

 
2  Kinematics of a prestressed lattice 
  
Let us consider an arbitrary lattice whose unit cell features 𝑍𝑍 rods attached to a a junction. On introducing 

a Cartesian reference frame with the origin at the position of the junction in the prestressed configuration, we 
consider a homogeneous (or affine) incremental deformation of the unit cell defined through the following 
deformation map  

  (1) 
 where ∘ 𝑟𝑟𝑖𝑖 is the position vector of the end-point of the 𝑖𝑖 −th rod in the prestressed configuration (𝑖𝑖 = 1, … ,𝑍𝑍), 
𝑟𝑟𝑖𝑖 is the position vector of the same point in the deformed configuration, and 𝐹𝐹 is a constant deformation gradient. 
Denoted the norms of 𝑟𝑟𝑖𝑖 and ∘ 𝑟𝑟𝑖𝑖 by 𝑟𝑟𝑖𝑖 and ∘ 𝑟𝑟𝑖𝑖, respectively, we easily obtain from Eqn.(1) the well known 
formula  

  (2) 
 where  

 𝐸𝐸 = 1
2

(𝐹𝐹𝑇𝑇𝐹𝐹 − 𝐼𝐼) (3) 
 is the Green-Saint Venant finite strain tensor [48, 49]. Here and in what follows, the apex 𝑇𝑇  denotes the 
transposition symbol, and 𝐼𝐼 denotes the identity tensor. Let now 𝜀𝜀 denote the norm of the displacement gradient 
𝐻𝐻 = 𝐹𝐹 − 𝐼𝐼. Making use of Taylor’s formula, we obtain from Eqn.(2) the result  

(4) 
 where 𝑜𝑜(𝛼𝛼) denotes a scalar function that approaches zero faster than 𝛼𝛼, and  denotes the unit vector in the 



direction of . 
 
3  Incremental equilibrium equations in the prestressed state 

 
  We model each rod of the lattice as a linear spring obeying the following constitutive law  
 𝑓𝑓𝑖𝑖 = 𝑘𝑘𝑖𝑖(𝑟𝑟𝑖𝑖 − �̅�𝑟𝑖𝑖)  𝑒𝑒𝑖𝑖 (5) 

 In Eqn.(5), 𝑓𝑓𝑖𝑖 is the axial force carried by the generic rod (say, the 𝑖𝑖 −th one), �̅�𝑟𝑖𝑖 is the length of such a rod in 
the natural state (rest length), 𝑒𝑒𝑖𝑖 is the unit vector in the direction of the rod in the deformed configuration, and 
𝑘𝑘𝑖𝑖 is a constant (i.e., deformation independent) stiffness coefficient given by  

 𝑘𝑘𝑖𝑖 = 𝐸𝐸𝑖𝑖𝐴𝐴𝑖𝑖
�̅�𝑟𝑖𝑖

 (6) 
 where 𝐴𝐴𝑖𝑖 denotes the cross-section area of the rod. The latter is supposed to remain constant during any lattice 
deformation. 

Our next developments make use of the assumption that the lattice is at equilibrium under zero external 
forces in correspondence of the inner nodes, both in the prestressed state and in the deformed configuration. Such 
an assumption implies that the rods follow any mesoscopic deformation of the lattice at the microscopic level by 
deforming in the pure stretching mode (no bending effects) [9]. The equilibrium equations in the deformed 
configuration require that at each inner node it results  

  (7) 
 while those in the prestressed state impose  

  (8) 
 

 Taking to into account Eqn. (8) and retaining terms up to the first-order in 𝜀𝜀, we deduce from Eqn. (7) 
the following incremental equilibrium equations  

 

  (9) 
 
4  Elastic constants 
   The elastic energies competing to the unit cell in the prestressed and deformed configurations are 

respectively given by  

  (10) 
  

 ℰ = 1
2
∑𝑍𝑍𝑖𝑖=1 𝑘𝑘𝑖𝑖 (𝑟𝑟𝑖𝑖 − �̅�𝑟𝑖𝑖)2 (11) 

 and it is immediate to verify that it results  

  (12) 
 where ∘ 𝑡𝑡𝑖𝑖 denotes the scalar axial force carried by the 𝑖𝑖 −th rod in the prestressed configuration. According to 
the constitutive equation (5), such a quantity is given by  



  (13) 
 

By making use of Eqn. (4) into Eqn. (12), we obtain  

  (14) 
 where 𝑉𝑉0, indicates the volume of the unit cell in the prestressed state. In Eqn. (14), we have denoted the 
Cartesian components of 𝐸𝐸 and ∘ 𝑒𝑒𝑖𝑖 by 𝐸𝐸𝛼𝛼𝛼𝛼 and ∘ 𝑒𝑒𝑖𝑖𝛼𝛼 (𝛼𝛼,𝛽𝛽 = 1, . . ,𝑑𝑑), respectively, and we have made use of 
the summation convention on Greek indices. 

The structure of Eqn.(14) leads us to recognize that, at the mesoscale, the prestressed lattice exhibit the 
following homogeneized Cauchy stress ∘ 𝜎𝜎𝛼𝛼𝛼𝛼 and the incremental (or tangent) second-order elastic constants ∘
𝐶𝐶𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 (cf. [29], par. 4.2)  

  (15) 
  

  (16) 
 It is easily verified that ∘ 𝜎𝜎𝛼𝛼𝛼𝛼 is symmetric in 𝛼𝛼,𝛽𝛽 and that the elastic constants ∘ 𝐶𝐶𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 match the following 
full symmetry conditions  

  (17) 
 Such constants have full mathematical and thermodynamical meaning, but cannot be measured experimentally 
(see, e.g., [29, 33]). Elastic constants that instead characterize the experimental response of the lattice material at 
the mesoscopic level in the prestressed state are the so-called elastic stiffness coefficients ∘ 𝑐𝑐𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼, which are 
defined through (refer, e.g., to [29, 33])  

  (18) 
 where 𝛿𝛿𝛼𝛼𝛼𝛼 denotes the Kronecker delta. In the case under consideration it results  

  (19) 
 ∘ 𝜎𝜎 being the applied isotropic stress. Making use of Eqn.(19) into Eqn.(18), we obtain  

  (20) 
  which implies that the elastic stiffness coefficients ∘ 𝑐𝑐𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 exhibit full symmetry properties, in the present case. 
The same result does not hold under more general conditions of initial stress, when such constants exhibit only 
minor symmetry properties (cf. [29]). 

It is worth observing that the elastic stiffness coefficients ∘ 𝑐𝑐𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 coincide with the elastic constants 
𝐶𝐶𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 that match material stability conditions in statistical mechanics systems at zero temperature [33], for the 
case under consideration of isotropic prestress. 

 
5  2D and 3D examples 



  The present section is devoted to derive the expressions of the second order and elastic stiffness 
constants of some noticeable lattice materials under isotropic prestress. The given results show that all the 
examined lattices exhibit incremental elastic response from the prestressed state characterized by cubic symmetry 
with material symmetry axes aligned with the unit cell edges. We assume that the unit vectors ∘ 𝑒𝑒𝑖𝑖  in the 
prestressed state of such lattices are aligned with those characterizing the natural state. Under such an assumption, 
it is easily shown that the equilibrium equations (8) are satisfied for any arbitrary incremental deformation of the 
examined lattices from the prestessed state (see also [9]). We develop numerical predictions of the elastic moduli 
of composite lattices that can be 3d printed in hard or soft FDM materials, namely the ABS-M30 by Stratasys, 
with Young modulus 𝐸𝐸� = 2.2 GPa, and yield stress 𝜎𝜎𝑦𝑦 = 30 MPa [46] (hereafter simply denoted as ‘ABS’ or 
‘Hard’), and the NinjaFlex by NinjaTek, a flexible polyurethane material that exhibits Young modulus 𝐸𝐸� = 12 
MPa, and yield stress 𝜎𝜎𝑦𝑦 = 4 MPa [47] (hereafter referred to as ‘NJF’ or ‘Soft’). Since compressed lattices may 
easily fail in buckling (refer, e.g., to [13, 14] and references therein), we focus our attention on systems loaded by 
isotopic prestress in tension, i.e. equal biaxial or triaxial tensile loads. 

 
5.1  Tetrakis-like lattices 
  
We begin by examining a two-dimensional tetrakis-like lattice material that tessellates the plane through 

the unit cell illustrated in Figure 1. Such a unit cell is equipped with 𝑍𝑍 = 8 rods, which we assume are endowed 
with the following geometrical and prestress properties 

 

 

  (21) 

   
 

 

 (22) 
 

 

 (23) 
 

 

 (24) 
 

 In the above equations, 𝐴𝐴1 , 𝐴𝐴2  and 𝐴𝐴3  denote the cross-section areas of horizontal, vertical and 
diagonal rods (Fig. 1); 𝐸𝐸�1, 𝐸𝐸�2 and 𝐸𝐸�3 denote the Young moduli of the materials forming such rods; and 𝜎𝜎01 and 
𝜎𝜎02 indicate two different states of isotropic prestress of the lattice. Throughout the manuscript, we convene to 
affect with the superscript . ̂ the properties of the materials that form the rods, in oder to distinguish such properties 
from those relative to the lattice material at the mesoscale. As seen from Eqns. (24), the state of prestress 
corresponding to 𝜎𝜎01 involves prestress forces only in horizontal and vertical members, while that corresponding 
to 𝜎𝜎02 involves prestress forces in horizontal and diagonal members. 

 



    
Figure  1: Tetrakis-like lattice material (left), and zoom-in of the elementary unit cell in the prestressed state 

(right) (ℎ3 = �ℎ12 + ℎ22/2). 
   
 
5.1.1  Second-order elastic constant 
  
Let us make use of Eqns.(21) - (24) into Eqns. (16) to obtain the second-order elastic constants of the 

lattice material under consideration in the following matrix form (Voigt notation) 
 

  

  (25) 
  

 
 where 

 

                     (26) 

 
   

 
 



5.1.2  Elastic stiffness coefficients 
 
The use of Eqns. (26) into Eqns. (20) leads us to following expressions of the matrix of the experimental 

elastic constants 

 

(27) 

 
   

 
 Where 
  

 

(28) 

 
 
5.1.3  Elastic stiffness moduli 
  
In order to get handy expressions of the Young moduli, Poisson’s ratios and shear modulus of a prestressed 

tetrakis lattice material, which can be actually measured in experimental tests (elastic stiffness moduli), from now 
on we will focus our attention on a square tetrakis lattice that features ℎ1 = ℎ2 = ℎ, ℎ3 = ℎ√2/2, 𝐴𝐴3 = 𝐴𝐴1, 
𝐴𝐴2 = √2𝐴𝐴1, and 𝐸𝐸�3 = 𝐸𝐸�1 (horizontal and vertical rods made of the same material). In the present case, we refer 
to the horizontal and vertical rods as members of ‘Type 1’, and to the diagonal rods as members of ‘Type 2’. 

By inverting the matrix ∘ 𝑐𝑐 given by Eqns. (27)-(28), we obtain the compliance matrix ∘ 𝑎𝑎 =∘ 𝑐𝑐−1 and 
the following expressions of the elastic stiffness moduli of the prestressed lattice 

 

 

(29) 

   



 
 In Eqns. (29), 𝜙𝜙 denotes the solid volume fraction of the lattice in the prestressed state (defined as the 

ratio 𝑉𝑉𝑆𝑆/𝑉𝑉0 between the total volume of the rods in the unit cell 𝑉𝑉𝑆𝑆  and the unit cell volume 𝑉𝑉0), while 𝐸𝐸  
denotes the Young modulus, 𝜈𝜈  denotes the Poisson’s ratio, 𝐺𝐺  denotes the shear modulus, and 𝐾𝐾 denoted the 
bulk modulus of the cubic-symmetric material, which characterize the incremental experimental response of the 
material from the prestressed state. When it results 𝜎𝜎01 = 𝜎𝜎02 = 0, from Eqns. (29) we deduce the following 
expressions of the engineering elastic constants in the stress-free state (‘stress-free moduli’ , cf. Biot [31]) 

 

 

𝐸𝐸� =   𝐸𝐸�1  (𝐸𝐸�1+𝐸𝐸�2)  𝜙𝜙
2  (2𝐸𝐸�1+𝐸𝐸�2)

,

�̅�𝜈 =   𝐸𝐸�2
2𝐸𝐸�1+𝐸𝐸�2

,

�̅�𝐺 =   𝐸𝐸�2  𝜙𝜙
8

,

𝐾𝐾� =   (𝐸𝐸�1+𝐸𝐸�2)  𝜙𝜙
8

.

 (30) 

 
 By setting 𝐸𝐸�1 = 𝐸𝐸�2 = 𝐸𝐸�0 into Eqns. (29), it is immediate to recognize that the lattice response is isotropic 

with (stress-free) elastic moduli: 𝐸𝐸� = 𝐸𝐸�0  𝜙𝜙/3, �̅�𝜈 = 1/3, �̅�𝐺 = 𝐸𝐸�0  𝜙𝜙/8, and 𝐾𝐾� = 𝐸𝐸�0  𝜙𝜙/4 (cf. [9]). 
It is useful to compare the above moduli with the Young modulus ∘ 𝐸𝐸, the Poisson’s ratio ∘ 𝜈𝜈, thr shear 

modulus ∘ 𝐺𝐺, and the bulk modulus ∘ 𝐾𝐾, which are associated with the second-order constants given in Sect. 5.1.1. 
Upon replacing ∘ 𝑐𝑐𝑖𝑖𝑖𝑖 and ∘ 𝑎𝑎𝑖𝑖𝑖𝑖 respectively with ∘ 𝐶𝐶𝑖𝑖𝑖𝑖 and the components ∘ 𝐴𝐴𝑖𝑖𝑖𝑖 of the matrix ∘ 𝐴𝐴 =∘ 𝐶𝐶−1, it is 
easy to verify that it results 

 

(31) 
 

 
   

 
Let us now numerically investigate on the values of the elastic stiffness moduli exhibited by a prestressed 

tetrakis lattice that employs either hard or soft FDM materials for the rods. Since for the lattice under consideration 
it results 𝑉𝑉𝑆𝑆 = 4𝐴𝐴1ℎ + 4𝐴𝐴2ℎ√2/2, and we are assuming 𝐴𝐴2 = √2𝐴𝐴1, from the definition of 𝜙𝜙 and Eqns. (24), 
we easily obtain 

 

(32) 

   
 where 𝜎𝜎�1 and 𝜀𝜀1̂ denote the axial stress and axial strain carried by the rods of Type 1, while 𝜎𝜎�2 and 𝜀𝜀2̂ 

denote the axial stress and axial strain carried by the Type 2 rods, respectively. Eqns. (24) highlight that the state 
of prestress 𝜎𝜎01 involves nonzero prestress forces only in the horizontal and vertical members (Type 1 rods), 



while 𝜎𝜎02 involves nonzero prestress forces only in the diagonal members (Type 2 rods). In order to prestress the 
lattice through an isotropic plane deformation from the natural state, we link 𝜎𝜎01 to 𝜎𝜎02 by imposing that it results 
𝜀𝜀1̂ = 𝜀𝜀2̂ in Eqns. (32), which gives 

 
 𝜎𝜎02 =   𝐸𝐸�2

𝐸𝐸�1
  𝜎𝜎01. (33) 

 
Let 𝜎𝜎�𝑦𝑦1 and 𝜎𝜎�𝑦𝑦2 respectively denote the yield stresses of the materials that form the members of Type 1 

and Type 2, and let us introduce the notations 𝜎𝜎� = 𝜎𝜎�1, 𝜎𝜎�𝑦𝑦 =  𝑚𝑚𝑖𝑖𝑚𝑚 (𝜎𝜎�𝑦𝑦1, 𝜎𝜎�𝑦𝑦2𝐸𝐸�1/𝐸𝐸�2). Figure 2 illustrates the 
distributions of the 𝐸𝐸 / 𝐸𝐸 , 𝜈𝜈 / 𝜈𝜈 , 𝐺𝐺 / 𝐺𝐺 , and 𝐾𝐾 / 𝐺𝐺  ratios obtained via Eqns. (29)-(30), when the the 
dimensionless prestress variable 𝜎𝜎�/𝜎𝜎�𝑦𝑦 ranges in the interval [0,1]. As we already noticed, we indeed focus our 
attention on lattices subject to equal biaxial tension, on considering that compressed lattices may suffer anticipated 
failure due to buckling [13, 14]. We use the acronyms ‘Hard1&2’, ‘Soft1&2’, ‘Hard1/Soft2’ and ‘Soft1/Hard2’ to 
respectively denote the lattices that employ ABS for the rods of Type 1 and 2, NJF for the rods of Type 1 and 2, 
ABS for the rods of Type 1 and NJF for the rods of Type 2, and NJF for the rods of Type 1 and ABS for the rods 
of Type 2. Table 1 provides the reference, stress-free moduli exhibited by the lattices under consideration. One 
observes from Tab. 1 that the Poisson’s ratio of Hard1/Soft2 lattices is close to zero (as well as the corresponding 
shear modulus), while the value of such a property in Soft1/Hard2 lattices is very close to the extreme value (1) 
reachable by stable isotropic materials in 2d [50]. 

The plots in Fig. 2 highlight small variations of the elastic stiffness moduli with the prestress 𝜎𝜎�/𝜎𝜎�𝑦𝑦 in 
homogeneous Hard lattices (few percents); large or moderately large variations in homogeneous Soft lattices; and 
markedly large variations in some composite Hard-Soft systems. Focusing our attention on systems that highlight 
more marked variations of the elastic stiffness moduli over the stress-free values, we note that 𝐸𝐸 / 𝐸𝐸  oscillates 
between 1.00 and 6.83 in Soft1/Hard2 composite lattices, while 𝜈𝜈 / 𝜈𝜈  oscillates between 1.00 and −0.88 in 
in homogeneous Soft lattices (being equal to zero for 𝜎𝜎�/𝜎𝜎�𝑦𝑦 = 0.50), and between 1.00 and −5.04 in Soft1/Hard2 
composite lattices (𝜈𝜈 = 0 at 𝜎𝜎�/𝜎𝜎�𝑦𝑦 ≈ 0.17). The 𝐺𝐺 / 𝐺𝐺  ratio ranges between 1.00 and 2.20 in homogeneous 
Soft lattices, and between 1.00 and 7.01 in Soft1/Hard2 composite lattices, always when the prestress ratio 𝜎𝜎�/𝜎𝜎�𝑦𝑦 
ranges between 0 and 1 (see Fig. 2). The variation of the shear modulus 𝐺𝐺 with the applied prestress is clearly 
understood by making use of (32)-(33) into Eqn. (29), obtaining 

 

 𝐺𝐺 =   𝐸𝐸�2  𝜙𝜙
8

  +  �2  +   𝐸𝐸�2
𝐸𝐸�1
� 𝜎𝜎�   𝜙𝜙

8
. (34) 

 Eqn. (34) points out that 𝐺𝐺 might markedly change from the reference value �̅�𝐺 = 𝐸𝐸�2  𝜙𝜙/8, when 𝜎𝜎� 
can assume values close to 𝐸𝐸�2, i.e. in composite systems that use a hard material for the rods of Type 1 and a soft 
material for the rods of Type 2 (𝜎𝜎�𝑦𝑦 = 2.5𝐸𝐸�2). In particular, the difference (𝐺𝐺 − 𝐺𝐺 ) assumes positive values 
under tensile isotropic prestress (𝜎𝜎� > 0), and negative values under isotropic pressure preload (𝜎𝜎� < 0). Large 
oscillations also exhibits the 𝜈𝜈 / 𝜈𝜈  ratio in Hard1/Soft2 composite systems, with the difference that such a 
quantity assume negative values (giving rise to incremental auxetic response) under tensile isotropic prestress, and 
positive values under isotropic pressure preload. Tab. 1 highlights that the reference values 𝐺𝐺 and 𝜈𝜈  of the 
above moduli assume very small values (close to zero) in correspondence to Hard1/Soft2 systems.   By 
combining the results presented in Tab. 1 and Fig. 2, we conclude that in Soft1&2 lattices the elastic stiffness 
Poisson’s ratio 𝜈𝜈 is equal to 0.33 for 𝜎𝜎� = 0, while it results 𝜈𝜈 = −0,29 for 𝜎𝜎� = 𝜎𝜎�𝑦𝑦 (𝜈𝜈 = 0 for 𝜎𝜎� = 0.50  𝜎𝜎�𝑦𝑦; 
𝜈𝜈 = −0,15 for 𝜎𝜎� = 0.75  𝜎𝜎�𝑦𝑦). In Hard1/Soft2 lattices such a quantity is instead equal to 0.002 for 𝜎𝜎� = 0, and 
it results 𝜈𝜈 = −0,011  for 𝜎𝜎� = 𝜎𝜎�𝑦𝑦  ( 𝜈𝜈 = −0,004  for 𝜎𝜎� = 0.5  𝜎𝜎�𝑦𝑦 ). A qualitatively different response is 
exhibited by the 𝐸𝐸 / 𝐸𝐸  ratio, which features large oscillations in composite systems that use a soft material for 
the rods of Type 1 and a hard material for the rods of Type 2, as we already observed (cf. Fig. 2). For what concerns 
the 𝐾𝐾 / 𝐾𝐾  ratio, we observe from Fig. 2 that such a quantity exhibits very small (∼ 1%) deviations from one 
in full Hard systems, and oscillates between 1.00 and 0.60 in full Soft systems. The 𝐾𝐾 / 𝐾𝐾  ratio in composite 



Hard1/Soft2 and Soft1/Hard2 systems (not shown in Fig. 2) remains very close to one, as in full Hard systems. 
Finally, it is easy to verify that the ∘ 𝐸𝐸 / 𝐸𝐸 , ∘ 𝐺𝐺/ 𝐺𝐺 , and ∘ 𝐾𝐾/ 𝐾𝐾  ratios vary with 𝜎𝜎�/𝜎𝜎�𝑦𝑦 exactly like the 
𝐾𝐾 / 𝐾𝐾  ratio, while ∘ 𝜈𝜈/ 𝜈𝜈  remains equal to one, independently of the applied prestress (cf. Eqns. (31)). 

 

 
Figure 2: Elastic stiffness moduli of a tetrakis lattice material vs. the applied prestress for different arrangements 
of soft and hard rods. 

 
  

Table  1: Elastic stiffness moduli in the stress-free state of tetrakis lattice materials 
     

       
  𝐸𝐸 (MPa)   𝜈𝜈   𝐺𝐺 (MPa)   𝐾𝐾 (MPa)  

Hard1&2   0.7333 𝜙𝜙   0.3333   0.2750 𝜙𝜙   0.5500 𝜙𝜙  
Soft1&2   0.0033 𝜙𝜙   0.3333   0.00125 𝜙𝜙   0.0025 𝜙𝜙  

Hard1/Soft2  0.5513 𝜙𝜙   0.0023   0.0013 𝜙𝜙   0.2763 𝜙𝜙  
Soft1/Hard2   0.0050 𝜙𝜙   0.9910   0.2750 𝜙𝜙   0.2763 𝜙𝜙  

 
  

  
 
  
 



 
Table  2: Elastic constants of a simple cubic lattice material (𝑍𝑍 = 6) under isotropic prestress. 

   
5.2  3D lattices 
 The present section examines a variety of 3D lattice materials (𝑑𝑑 = 3) that match the equilibrium 

conditions (9) under arbitrary incremental deformations from the isotropically prestressed state. The examined 
lattices correspond to the simple cubic (𝑍𝑍 = 6), body-centered cubic (BCC, 𝑍𝑍 = 8), face-centered cubic octet 
(FCC octet, 𝑍𝑍 = 12) and tetrakaidecahedral (𝑍𝑍 = 14) truss structures analyzed in [10] under zero initial stress. 

Tables 3-6 present the unit cell geometry and the‘prestressed’ elastic constants obtained through the theory 
presented in Sect. 4. In the lattices with coordination numbers 𝑍𝑍 = 6, 8, 12 we observe that all the rods have the 
same length ∘ 𝑟𝑟, cross section area A, and Young modulus 𝐸𝐸�0, and carry equal initial (axial) forces ∘ 𝑡𝑡. In the 
tetrakaidecahedral case (𝑍𝑍 = 14), the lattice is instead made of six rods with length √2ℎ, cross-section area 𝐴𝐴1, 
Young modulus 𝐸𝐸�1, and initial axial force ∘ 𝑡𝑡1 = 4ℎ𝜎𝜎01 (rods of ‘Type 1’ parallel to the cubic symmetry axes, 
represented in blue/dark color in Tab. 6); and eight rods with length �3/2ℎ, cross-section area 𝐴𝐴2 = 𝜂𝜂𝐴𝐴1, Young 
modulus 𝐸𝐸�2, and initial force ∘ 𝑡𝑡2 = 2√3ℎ𝜎𝜎02 (‘diagonal’ rods of ‘Type 2’, represented in red/light color in Tab. 
6). Here, ℎ denotes the lattice constant (length of the edges of the Kelvin-type unit cell of the lattice, cf. Tab. 6), 



while 𝜎𝜎01 and 𝜎𝜎02 denote two different states of isotropic prestress, with the first one involving prestress forces 
only in the rods of Type 1, and the second one involving prestress forces only in the rods of Type 2. 

It is easily shown that all the lattices in Tables 3-6 exibit cubic elastic symmetry, both in terms of second-
order elastic constants ∘ 𝐶𝐶𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 , and in terms of the elastic stiffness constants ∘ 𝑐𝑐𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 , with the following 
independent constants different from zero (Voigt notation)  

 

 

(35) 

 
The results given in Tabs. 3-6 include the analytic expressions of the elastic stiffness moduli defined as 

follows  

 

(36) 
 

 
 where ∘ 𝑎𝑎𝑖𝑖𝑖𝑖 are the components of the compliance matrix ∘ 𝑎𝑎 =∘ 𝑐𝑐−1. It is easy to verify that the results 

provided in Tabs. 3-6 exactly reduce to to those presented in [10, 9] when the applied prestress vanishes (𝜎𝜎0 = 0). 
In the case of the tetrakaidecahedral lattice, the elastic stiffness moduli (36) are provided for 𝜂𝜂 = 𝐴𝐴2/𝐴𝐴1 =

3√3/4 [9], when it results 
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 For such a lattice, the condition of volumetric deformation from the natural state leads to the following 

relationship between 𝜎𝜎01 and 𝜎𝜎02 (cf. Eqns. (37)) 
 
 𝜎𝜎02 =   3

2
  𝐸𝐸�2

𝐸𝐸�1
  𝜎𝜎01. (38) 

 
By making use of the same notation introduced for tetrakis lattices in Sect. 5.1.3, we show in Fig. 8 the 

variation of the ratios between the elastic stiffness moduli 𝐸𝐸 , 𝜈𝜈 and 𝐺𝐺 of a prestressed tetrakaidecahedral lattice 
and the stress-free moduli 𝐸𝐸� , �̅�𝜈 and �̅�𝐺, for varying values of the prestress variable 𝜎𝜎�/𝜎𝜎�𝑦𝑦 in the interval [0,1] 
(as in Sect. 5.1.3, hereafter we use the subscripts 1 and 2 to mark properties relative to members of Type 1 and 
Type 2, respectively, and we set: 𝜎𝜎� = 𝜎𝜎�1, 𝜎𝜎�𝑦𝑦 =  𝑚𝑚𝑖𝑖𝑚𝑚 (𝜎𝜎�𝑦𝑦1, 𝜎𝜎�𝑦𝑦2𝐸𝐸�1/𝐸𝐸�2)). Table 7 provides the reference moduli 
exhibited by the tetrakaidecahedral lattices under consideration. 

The plots   illustrated in Fig. 8   provide results that are similar to those presented in Fig. 2 for a 2D 
tetrakis lattice, highligthing marked variations of the 𝐸𝐸/𝐸𝐸� ratio in composite lattices with soft rods of Type 1 and 
hard rods of Type 2 (Soft1/Hard2 systems), and marked variations of the 𝜈𝜈/�̅�𝜈 and 𝐺𝐺/�̅�𝐺 ratios in lattices composed 
of all soft rods (Soft systems), or lattices formed by hard rods of Type 1 and soft rods of Type 2 (Hard1/Soft2 
systems). Also in tetrakaidecahedral lattices, as well as in tetrakis lattices, the Poisson ratio can assume negative 



values in Hard1/Soft2 systems under (isotropic) tensile preload, giving raise to incremental auxetic response from 
the prestressed state.   A combined exam of the results presented in Tab. 7 and Fig. 8 reveals that in Soft1&2 
tetrakaidecahedral lattices the elastic stiffness Poisson’s ratio 𝜈𝜈 is equal to 0.25 for 𝜎𝜎� = 0, while it results 𝜈𝜈 =
−0,58  for 𝜎𝜎� = 𝜎𝜎�𝑦𝑦  (𝜈𝜈 = −0.06 for 𝜎𝜎� = 0.50  𝜎𝜎�𝑦𝑦 ; 𝜈𝜈 = −0,29 for 𝜎𝜎� = 0.75  𝜎𝜎�𝑦𝑦 ). In Hard1/Soft2 lattices 
such a quantity is instead equal to 0.002 for 𝜎𝜎� = 0, and it results 𝜈𝜈 − 0,012 for 𝜎𝜎� = 𝜎𝜎�𝑦𝑦 (𝜈𝜈 = −0,005 for 𝜎𝜎� =
0.5  𝜎𝜎�𝑦𝑦). The plots in Fig. 8 also show that the 𝐾𝐾 / 𝐾𝐾  ratio exhibits very small (∼ 1%) deviations from one 
in full Hard systems, and that the same ratio oscillates between 1.00 and 0.20 in full Soft systems, when the 
prestress ratio 𝜎𝜎�/𝜎𝜎�𝑦𝑦 ranges between 0 and 1 (cf. Fig. 8). 

We now pass to compute the Young modulus ∘ 𝐸𝐸, Poisson’s ratio ∘ 𝜈𝜈, shear modulus ∘ 𝐺𝐺 , and bulk 
modulus ∘ 𝐾𝐾 associated with the second-order constants ∘ 𝐶𝐶𝑖𝑖𝑖𝑖. It is an easy task to verify that such quantities 
assume the following expressions in the case of the tetrakaidecahedral lattices under consideration 

 

  (39) 
 

 Eqns. (39) highlight that it results ∘ 𝐾𝐾 = 𝐾𝐾 + (𝜎𝜎01 + 𝜎𝜎02)/3 in the present 3D case, wile in 2D one gets 
∘ 𝐾𝐾 = 𝐾𝐾 (cf. Sect. 5.1). It is easily shown that all the ∘ 𝐸𝐸 / 𝐸𝐸 , ∘ 𝐺𝐺/ 𝐺𝐺 , and ∘ 𝐾𝐾/ 𝐾𝐾  ratios exhibit the same 
variation law with the prestress 𝜎𝜎�/𝜎𝜎�𝑦𝑦, featuring ∼ 1% deviations from one in full Hard systems, and oscillations 
between 1.00 and 0.60 in full Soft systems (Fig. 9). The ∘ 𝜈𝜈/ 𝜈𝜈  ratio is instead constantly equal to one, for any 
𝜎𝜎�/𝜎𝜎�𝑦𝑦 ∈ [0,1], as in the case of the tetrakis lattices analyzed in Sect. 5.1. 



 
   

Table  3: Elastic constants of a BCC lattice material (𝑍𝑍 = 8) under isotropic prestress. 
     
   



 
  

Table  4: Elastic constants of a FCC lattice material (𝑍𝑍 = 12 ) under isotropic prestress. 
     
   



 
  

Table  5: Elastic constants of a tetrakaidecahedral lattice material (𝑍𝑍 = 14) under isotropic prestress. 
     
    

Table  6: Elastic stiffness moduli in the stress-free state of tetrakaidecahedral lattice materials 
     

       
  𝐸𝐸 (MPa)   𝜈𝜈   𝐺𝐺 (MPa)   𝐾𝐾 (MPa)  

Hard1&2   0.3667 𝜙𝜙   0.2500   0.2750 𝜙𝜙   0.2444 𝜙𝜙  
Soft1&2   0.0017 𝜙𝜙   0.2500   0.1467 𝜙𝜙   0.0011 𝜙𝜙  

Hard1/Soft2  0.2940 𝜙𝜙   0.0023   0.0007 𝜙𝜙   0.0984 𝜙𝜙  
Soft1/Hard2   0.0020 𝜙𝜙   0.4978   0.1467 𝜙𝜙   0.1471 𝜙𝜙  

 
  



 
Figure 3: Elastic sti_ness moduli of a tetrakaidecahedral lattice material vs. the applied prestress for 

di_erent arrangements of soft and hard rods. 
 
 
6  Concluding remarks 
 
We have investigated the incremental elastic moduli of 2d and 3d stretching-dominated lattice materials 

from an isotropically prestressed state. The results presented in Sect. 5 have examined the variation with the 
applied prestress of the elastic stiffness moduli of a variety of lattices, with special focus on composite lattices 
composed of hard and/or soft FDM materials in different rods, and tensile preload. We have observed that the 
ratios between the incremental Young and shear moduli in the prestressed state and the corresponding stress-free 
moduli of composite lattices may reach extreme values equal to 7 ÷ 8, giving rise to significant increases of the 
tangent stiffness. On the other hand, we have noted that the   elastic stiffness Poisson’s ratio may show markedly 
negative values in the soft and hard/soft lattices analyzed in in Sect. 5, by reaching extreme values   that can be 
equal to ≈ −2 ÷ −5 times the value in the stress-free state, under biaxial/triaxial tension preloads. Such a result 
reveals a novel feature of isotropically prestressed lattices, which consists of the possibility to enforce and 
modulate an incremental auxetic response from the prestressed state, through a suitable control of the tensile 
preload. 

The state of prestress examined in the present work can be, e.g., applied by constraining a lattice structure 
to reaction walls, like, e.g., in the case of sandwich structures composed of stiff facesheets and truss cores [44]. 
Actuated connections and/or truss members can be employed to enforce the desired prestress [37, 45]. We address 
the fabrication and testing of the physical models of the structures anaylzed in this study to future work, through 
recourse to traditional fabrication methods or novel additive manufacturing techniques. The latter may, e.g., 
employ projection micro-stereolitography and swelling materials [42, 43], and/or multi-jet technologies that are 
able to simultaneously 3d print materials with different coefficients of thermal expansion. Additional future 
research lines will address the generalization of the approach presented in this study to different states of initial 
stress and lattice geometries. 
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